位置:科技资讯 > 科普 > 为什么鸟儿可以飞翔?“羽毛”为什么超“耐撕”?

为什么鸟儿可以飞翔?“羽毛”为什么超“耐撕”?

科技资讯  2018年10月29日 10:10  来源:新浪科技
摘要:每当看到鸟儿穿梭树林,雄鹰翱翔天空,你在想什么?你是否曾经想象自己像鸟儿一样,摆脱重力的束缚,在天空中寻找自由的海洋?那么,问题来了,为什么鸟儿可以飞翔?其实,幼儿园的小朋友都知道,那是因为鸟儿有翅膀。鸟儿翅膀是由羽毛组成的,但是什么造就了其长时间飞行,抵御风吹雨淋,甚至丛林钩挂的能力呢?鸟儿翱翔天...

  来源:中科院之声

  每当看到鸟儿穿梭树林,雄鹰翱翔天空,你在想什么?你是否曾经想象自己像鸟儿一样,摆脱重力的束缚,在天空中寻找自由的海洋?那么,问题来了,为什么鸟儿可以飞翔?其实,幼儿园的小朋友都知道,那是因为鸟儿有翅膀。鸟儿翅膀是由羽毛组成的,但是什么造就了其长时间飞行,抵御风吹雨淋,甚至丛林钩挂的能力呢?

 鸟儿翱翔天空(图片来自网络) 鸟儿翱翔天空(图片来自网络)

  孩童时期,我们曾玩弄羽毛,将其拉开,还可以让它恢复如初。

  如下图所演示的,当我们用一只手固定羽杆,另一只手沿羽尖向羽根方向拉扯羽毛时,羽毛会被拉伸(图A),并在某个瞬间沿叶脉方向被拉开(图B,红色箭头)。用手指轻轻地沿羽根到羽尖方向捋顺羽毛,可以将其分开的地方修复(图C,红线)。更为不可思议的是,当再次拉扯羽毛时(图D),羽毛会从另一个位置被分开,而不是之前的红线的地方(图E,蓝色箭头)。而分开的羽毛也可像前面一样被修复(图F,蓝线)。并且,这个分离和修复的过程可以重复很多次,表明羽毛具有优异和稳定的自修性能。

手动演示羽毛的分开和修复手动演示羽毛的分开和修复

  我们都知道结构决定性质,因此对于毛结构的探索从未止步。早在17世纪中期,英国博物学家罗伯特胡克就利用显微镜观察了鸟类羽毛的翅膀,并初步描绘出了羽毛的结构模型图(精细结构未能观察到)。自此,人们对羽毛的微观形貌有了初步了解。

  随着显微技术的发展,电子显微镜的出现使得更多更小的微观结构显露在人们眼前。人们总结出,羽毛是由两侧平行的羽枝组成,而羽枝两侧平行排布着不同结构的羽小枝。朝向羽毛尖端的羽小枝具有很多钩子(每个羽小枝有4-5个钩子)从其中部向腹侧伸出,被称为带钩羽小枝(hook barbule)。羽枝另一侧的羽小枝具有边缘卷曲的片状结构,被称为滑道羽小枝(bow barbule)。基于此,人们提出了“钩子-滑槽(hook-groove)”结构模型,用以解释羽毛的自修能力。

 Hooke描绘的羽毛模型图 Hooke描绘的羽毛模型图

  R.Hooke (1665) Micrographia, or, Some Physiological Descriptions of Minute BodiesMade by Magnifying Glasses with Observations and Inquiries Thereupon (The RoyalSociety, London)

羽毛结构模型的进一步完善羽毛结构模型的进一步完善

  但其实,目前人们提出的“钩子-滑槽”模型忽略了羽毛的精细结构,并不能很好地解释羽毛的抗撕裂和超耐久性。最近几天,中科院理化所仿生材料与界面科学实验室王树涛研究团队利用X-射线显微镜和显微操作系统,对羽毛的精细三维结构及其功能进行了观察,发现了羽毛的羽枝间的一种新型机械互锁体系:级联滑锁系统(由钩子,滑道和滑道端部的级联背刺组成),并阐明了级联滑锁结构的工作原理,成功揭示了羽毛抗撕裂能力和超耐久性的秘密(Repairable cascaded slide-lock system endows bird feathers with tear-resistance and superdurability, PNAS 2018, DOI: 10.1073/pnas.1808293115)。这种级联滑锁结构不但保证了羽枝间较强的粘附力,同时保护了羽枝在分离过程中不受到损坏。

  实验测试表明,羽毛具有很好的拉伸性能;并且经过1000次的分开/修复实验,羽枝间的粘附力仍能达到初始值的80%以上。由此说明,这种结构促成了鸟类羽毛的抗撕裂能力和超耐久性能,使得鸟类能够在恶劣的环境中飞行。同时,这种级联滑锁结构为新型柔性织物和电子器件的设计制备提供了新的思路。

利用X射线显微镜观察并重构的羽毛的原位立体结构利用X射线显微镜观察并重构的羽毛的原位立体结构

  羽小枝的精细结构。(A, B)单个羽枝的背侧(A)和腹侧(B)结构。(C, D)每个带钩羽小枝具有四个从其中部伸出的下垂向后的钩子。(E, F)滑道羽小枝边缘卷曲,卷曲的的边缘在其端部转变为4-5个曲面三角形状的刺状结构,称为背刺。(G, H)钩子和背刺具有匹配的尺寸和形状。

  羽毛的级联滑锁系统的简化功能模型:当受到外力时,钩子的带状部分被拉直,钩子勾在滑道羽小枝的卷曲边缘上(图i)。随着外力的逐渐增大,钩子以卷曲边缘为滑道,往端部滑动,并且羽小枝也逐渐弯曲变形(图ii)。当力逐渐增大,羽小枝弯曲程度达到一定值时,钩子滑到滑道端部的背刺位置并与背刺形成互锁结构(图iii)。由于背刺改变了滑道的方向,阻碍了钩子因继续滑动而从滑道羽小枝上滑离。若想钩子从滑道上滑离,则需要增加外拉力,使得带钩羽小枝和滑道羽小枝继续弯曲变形,当弯曲程度超过某个阈值时,钩子和背刺的互锁结构被打开,钩子从滑道上滑离或勾在后面的背刺上重复这个过程,直至离开(图iv-vi)。如果在钩子离开滑道之前,外力消失,钩子则会由于羽枝的回弹力回到接近初始位置(图v-i)。

  至此,羽毛的精细结构已被清楚阐述,级联滑锁结构模型也被提出,并合理解释了羽毛的抗撕裂能力和超耐久性。这种级联滑锁结构模型为进一步人造羽毛的制备提供了新思路,使人们的飞翔梦想更进一步。